
servant Documentation
Release

Servant Contributors

March 19, 2016

Contents

1 Introduction 3

2 Tutorial 5
2.1 A web API as a type . 5
2.2 Serving an API . 9
2.3 Querying an API . 25
2.4 Generating Javascript functions to query an API . 28
2.5 Documenting an API . 31

3 Helpful Links 37

i

ii

servant Documentation, Release

servant is a set of packages for declaring web APIs at the type-level and then using those API specifications to:

• write servers (this part of servant can be considered a web framework),

• obtain client functions (in haskell),

• generate client functions for other programming languages,

• generate documentation for your web applications

• and more...

All in a type-safe manner.

Contents 1

servant Documentation, Release

2 Contents

CHAPTER 1

Introduction

servant has the following guiding principles:

• concision

This is a pretty wide-ranging principle. You should be able to get nice documentation for your web
servers, and client libraries, without repeating yourself. You should not have to manually serialize and
deserialize your resources, but only declare how to do those things once per type. If a bunch of your
handlers take the same query parameters, you shouldn’t have to repeat that logic for each handler,
but instead just “apply” it to all of them at once. Your handlers shouldn’t be where composition goes
to die. And so on.

• flexibility

If we haven’t thought of your use case, it should still be easily achievable. If you want to use
templating library X, go ahead. Forms? Do them however you want, but without difficulty. We’re
not opinionated.

• separation of concerns

Your handlers and your HTTP logic should be separate. True to the philosphy at the core of HTTP
and REST, with servant your handlers return normal Haskell datatypes - that’s the resource. And
then from a description of your API, servant handles the presentation (i.e., the Content-Types). But
that’s just one example.

• type safety

Want to be sure your API meets a specification? Your compiler can check that for you. Links you
can be sure exist? You got it.

To stick true to these principles, we do things a little differently than you might expect. The core idea is reifying the
description of your API. Once reified, everything follows. We think we might be the first web framework to reify API
descriptions in an extensible way. We’re pretty sure we’re the first to reify it as types.

3

servant Documentation, Release

4 Chapter 1. Introduction

CHAPTER 2

Tutorial

This is an introductory tutorial to servant.

(Any comments, issues or feedback about the tutorial can be handled through servant’s issue tracker.)

2.1 A web API as a type

The source for this tutorial section is a literate haskell file, so first we need to have some language extensions and
imports:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}

module ApiType where

import Data.Text
import Servant.API

Consider the following informal specification of an API:

The endpoint at /users expects a GET request with query string parameter sortby whose value can
be one of age or name and returns a list/array of JSON objects describing users, with fields age, name,
email, registration_date”.

You should be able to formalize that. And then use the formalized version to get you much of the way towards writing
a web app. And all the way towards getting some client libraries, and documentation, and more.

How would we describe it with servant? An endpoint description is a good old Haskell type:

type UserAPI = "users" :> QueryParam "sortby" SortBy :> Get '[JSON] [User]

data SortBy = Age | Name

data User = User {
name :: String,
age :: Int

}

Let’s break that down:

• "users" says that our endpoint will be accessible under /users;

5

http://github.com/haskell-servant/servant/issues

servant Documentation, Release

• QueryParam "sortby" SortBy, where SortBy is defined by data SortBy = Age | Name, says
that the endpoint has a query string parameter named sortby whose value will be extracted as a value of type
SortBy.

• Get ’[JSON] [User] says that the endpoint will be accessible through HTTP GET requests, returning a
list of users encoded as JSON. You will see later how you can make use of this to make your data available
under different formats, the choice being made depending on the Accept header specified in the client’s request.

• The :> operator that separates the various “combinators” just lets you sequence static path fragments, URL
captures and other combinators. The ordering only matters for static path fragments and URL captures.
"users" :> "list-all" :> Get ’[JSON] [User], equivalent to /users/list-all, is obvi-
ously not the same as "list-all" :> "users" :> Get ’[JSON] [User], which is equivalent to
/list-all/users. This means that sometimes :> is somehow equivalent to /, but sometimes it just lets
you chain another combinator.

We can also describe APIs with multiple endpoints by using the :<|> combinators. Here’s an example:

type UserAPI2 = "users" :> "list-all" :> Get '[JSON] [User]
:<|> "list-all" :> "users" :> Get '[JSON] [User]

servant provides a fair amount of combinators out-of-the-box, but you can always write your own when you need it.
Here’s a quick overview of the most often needed the combinators that servant comes with.

2.1.1 Combinators

Static strings

As you’ve already seen, you can use type-level strings (enabled with the DataKinds language extension) for static
path fragments. Chaining them amounts to /-separating them in a URL.

type UserAPI3 = "users" :> "list-all" :> "now" :> Get '[JSON] [User]
-- describes an endpoint reachable at:
-- /users/list-all/now

Delete, Get, Patch, Post and Put

The Get combinator is defined in terms of the more general Verb:

data Verb method (statusCode :: Nat) (contentType :: [*]) a
type Get = Verb 'GET 200

There are other predefined type synonyms for other common HTTP methods, such as e.g.:

data Delete = Verb 'DELETE 200

data Patch = Verb 'PATCH 200

data Post = Verb 'POST 200

data Put = Verb 'PUT 200

There are also variants that do not return a 200 status code, such as for example:

type PostCreated = Verb 'POST 201

type PostAccepted = Verb 'POST 202

An endpoint always ends with a variant of the Verb combinator (unless you write your own combinators). Examples:

6 Chapter 2. Tutorial

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

servant Documentation, Release

type UserAPI4 = "users" :> Get '[JSON] [User]
:<|> "admins" :> Get '[JSON] [User]

Capture

URL captures are segments of the path of a URL that are variable and whose actual value is captured and passed to
the request handlers. In many web frameworks, you’ll see it written as in /users/:userid, with that leading :
denoting that userid is just some kind of variable name or placeholder. For instance, if userid is supposed to
range over all integers greater or equal to 1, our endpoint will match requests made to /users/1, /users/143
and so on.

The Capture combinator in servant takes a (type-level) string representing the “name of the variable” and a type,
which indicates the type we want to decode the “captured value” to.

data Capture (s :: Symbol) a
-- s :: Symbol just says that 's' must be a type-level string.

In some web frameworks, you use regexes for captures. We use a FromText class, which the captured value must be
an instance of.

Examples:

type UserAPI5 = "user" :> Capture "userid" Integer :> Get '[JSON] User
-- equivalent to 'GET /user/:userid'
-- except that we explicitly say that "userid"
-- must be an integer

:<|> "user" :> Capture "userid" Integer :> DeleteNoContent '[JSON] NoContent
-- equivalent to 'DELETE /user/:userid'

In the second case, DeleteNoContent specifies a 204 response code, JSON specifies the content types on which
the handler will match, and NoContent says that the response will always be empty.

QueryParam, QueryParams, QueryFlag

QueryParam, QueryParams and QueryFlag are about parameters in the query string, i.e., those parameters
that come after the question mark (?) in URLs, like sortby in /users?sortby=age, whose value is set to
age. QueryParams lets you specify that the query parameter is actually a list of values, which can be specified
using ?param=value1¶m=value2. This represents a list of values composed of value1 and value2.
QueryFlag lets you specify a boolean-like query parameter where a client isn’t forced to specify a value. The
absence or presence of the parameter’s name in the query string determines whether the parameter is considered to
have the value True or False. For instance, /users?active would list only active users whereas /users
would list them all.

Here are the corresponding data type declarations:

data QueryParam (sym :: Symbol) a
data QueryParams (sym :: Symbol) a
data QueryFlag (sym :: Symbol)

Examples:

type UserAPI6 = "users" :> QueryParam "sortby" SortBy :> Get '[JSON] [User]
-- equivalent to 'GET /users?sortby={age, name}'

Again, your handlers don’t have to deserialize these things (into, for example, a SortBy). servant takes care of it.

2.1. A web API as a type 7

https://hackage.haskell.org/package/servant/docs/Servant-Common-Text.html#t:FromText

servant Documentation, Release

ReqBody

Each HTTP request can carry some additional data that the server can use in its body, and this data can be encoded in
any format – as long as the server understands it. This can be used for example for an endpoint for creating new users:
instead of passing each field of the user as a separate query string parameter or something dirty like that, we can group
all the data into a JSON object. This has the advantage of supporting nested objects.

servant‘s ReqBody combinator takes a list of content types in which the data encoded in the request body can be
represented and the type of that data. And, as you might have guessed, you don’t have to check the content type header,
and do the deserialization yourself. We do it for you. And return Bad Request or Unsupported Content
Type as appropriate.

Here’s the data type declaration for it:

data ReqBody (contentTypes :: [*]) a

Examples:

type UserAPI7 = "users" :> ReqBody '[JSON] User :> Post '[JSON] User
-- - equivalent to 'POST /users' with a JSON object
-- describing a User in the request body
-- - returns a User encoded in JSON

:<|> "users" :> Capture "userid" Integer
:> ReqBody '[JSON] User
:> Put '[JSON] User

-- - equivalent to 'PUT /users/:userid' with a JSON
-- object describing a User in the request body
-- - returns a User encoded in JSON

Request Headers

Request headers are used for various purposes, from caching to carrying auth-related data. They consist of a header
name and an associated value. An example would be Accept: application/json.

The Header combinator in servant takes a type-level string for the header name and the type to which we want to
decode the header’s value (from some textual representation), as illustrated below:

data Header (sym :: Symbol) a

Here’s an example where we declare that an endpoint makes use of the User-Agent header which specifies the
name of the software/library used by the client to send the request.

type UserAPI8 = "users" :> Header "User-Agent" Text :> Get '[JSON] [User]

Content types

So far, whenever we have used a combinator that carries a list of content types, we’ve always specified ’[JSON].
However, servant lets you use several content types, and also lets you define your own content types.

Four content types are provided out-of-the-box by the core servant package: JSON, PlainText,
FormUrlEncoded and OctetStream. If for some obscure reason you wanted one of your endpoints to make
your user data available under those 4 formats, you would write the API type as below:

type UserAPI9 = "users" :> Get '[JSON, PlainText, FormUrlEncoded, OctetStream] [User]

8 Chapter 2. Tutorial

servant Documentation, Release

(There are other packages that provide other content types. For example servant-lucid and servant-blaze allow to
generate html pages (using lucid and blaze-html) and both come with a content type for html.)

We will further explain how these content types and your data types can play together in the section about serving an
API.

Response Headers

Just like an HTTP request, the response generated by a webserver can carry headers too. servant provides a Headers
combinator that carries a list of Header types and can be used by simply wrapping the “return type” of an endpoint
with it.

data Headers (ls :: [*]) a

If you want to describe an endpoint that returns a “User-Count” header in each response, you could write it as below:

type UserAPI10 = "users" :> Get '[JSON] (Headers '[Header "User-Count" Integer] [User])

Interoperability with wai: Raw

Finally, we also include a combinator named Raw that provides an escape hatch to the underlying low-level web library
wai. It can be used when you want to plug a wai Application into your webservice:

type UserAPI11 = "users" :> Get '[JSON] [User]
-- a /users endpoint

:<|> Raw
-- requests to anything else than /users
-- go here, where the server will try to
-- find a file with the right name
-- at the right path

One example for this is if you want to serve a directory of static files along with the rest of your API. But you can
plug in everything that is an Application, e.g. a whole web application written in any of the web frameworks that
support wai.

2.2 Serving an API

Enough chit-chat about type-level combinators and representing an API as a type. Can we have a webservice already?

2.2.1 A first example

Equipped with some basic knowledge about the way we represent APIs, let’s now write our first webservice.

The source for this tutorial section is a literate haskell file, so first we need to have some language extensions and
imports:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ScopedTypeVariables #-}

2.2. Serving an API 9

http://hackage.haskell.org/package/wai

servant Documentation, Release

{-# LANGUAGE TypeOperators #-}

module Server where

import Prelude ()
import Prelude.Compat

import Control.Monad.Except
import Control.Monad.Reader
import Data.Aeson.Compat
import Data.Aeson.Types
import Data.Attoparsec.ByteString
import Data.ByteString (ByteString)
import Data.List
import Data.Maybe
import Data.String.Conversions
import Data.Time.Calendar
import GHC.Generics
import Lucid
import Network.HTTP.Media ((//), (/:))
import Network.Wai
import Network.Wai.Handler.Warp
import Servant
import System.Directory
import Text.Blaze
import Text.Blaze.Html.Renderer.Utf8
import qualified Data.Aeson.Parser
import qualified Text.Blaze.Html

Important: the Servant module comes from the servant-server package, the one that lets us run webservers that
implement a particular API type. It reexports all the types from the servant package that let you declare API types
as well as everything you need to turn your request handlers into a fully-fledged webserver. This means that in your
applications, you can just add servant-server as a dependency, import Servant and not worry about anything else.

We will write a server that will serve the following API.

type UserAPI1 = "users" :> Get '[JSON] [User]

Here’s what we would like to see when making a GET request to /users.

[{"name": "Isaac Newton", "age": 372, "email": "isaac@newton.co.uk", "registration_date": "1683-03-01"}
, {"name": "Albert Einstein", "age": 136, "email": "ae@mc2.org", "registration_date": "1905-12-01"}
]

Now let’s define our User data type and write some instances for it.

data User = User
{ name :: String
, age :: Int
, email :: String
, registration_date :: Day
} deriving (Eq, Show, Generic)

instance ToJSON User

Nothing funny going on here. But we now can define our list of two users.

users1 :: [User]
users1 =

[User "Isaac Newton" 372 "isaac@newton.co.uk" (fromGregorian 1683 3 1)

10 Chapter 2. Tutorial

servant Documentation, Release

, User "Albert Einstein" 136 "ae@mc2.org" (fromGregorian 1905 12 1)
]

Let’s also write our API type.

type UserAPI1 = "users" :> Get '[JSON] [User]

We can now take care of writing the actual webservice that will handle requests to such an API. This one will be very
simple, being reduced to just a single endpoint. The type of the web application is determined by the API type, through
a type family named Server. (Type families are just functions that take types as input and return types.) The Server
type family will compute the right type that a bunch of request handlers should have just from the corresponding API
type.

The first thing to know about the Server type family is that behind the scenes it will drive the routing, letting you
focus only on the business logic. The second thing to know is that for each endpoint, your handlers will by default run
in the ExceptT ServantErr IO monad. This is overridable very easily, as explained near the end of this guide.
Third thing, the type of the value returned in that monad must be the same as the second argument of the HTTP method
combinator used for the corresponding endpoint. In our case, it means we must provide a handler of type ExceptT
ServantErr IO [User]. Well, we have a monad, let’s just return our list:

server1 :: Server UserAPI1
server1 = return users1

That’s it. Now we can turn server into an actual webserver using wai and warp:

userAPI :: Proxy UserAPI1
userAPI = Proxy

-- 'serve' comes from servant and hands you a WAI Application,
-- which you can think of as an "abstract" web application,
-- not yet a webserver.
app1 :: Application
app1 = serve userAPI server1

The userAPI bit is, alas, boilerplate (we need it to guide type inference). But that’s about as much boilerplate as you
get.

And we’re done! Let’s run our webservice on the port 8081.

main :: IO ()
main = run 8081 app1

You can put this all into a file or just grab servant’s repo and look at the doc/tutorial directory. This code (the source
of this web page) is in doc/tutorial/Server.lhs.

If you run it, you can go to http://localhost:8081/users in your browser or query it with curl and you see:

$ curl http://localhost:8081/users
[{"email":"isaac@newton.co.uk","registration_date":"1683-03-01","age":372,"name":"Isaac Newton"},{"email":"ae@mc2.org","registration_date":"1905-12-01","age":136,"name":"Albert Einstein"}]

2.2.2 More endpoints

What if we want more than one endpoint? Let’s add /albert and /isaac to view the corresponding users encoded
in JSON.

type UserAPI2 = "users" :> Get '[JSON] [User]
:<|> "albert" :> Get '[JSON] User
:<|> "isaac" :> Get '[JSON] User

2.2. Serving an API 11

http://hackage.haskell.org/package/wai
http://hackage.haskell.org/package/warp
http://github.com/haskell-servant/servant

servant Documentation, Release

And let’s adapt our code a bit.

isaac :: User
isaac = User "Isaac Newton" 372 "isaac@newton.co.uk" (fromGregorian 1683 3 1)

albert :: User
albert = User "Albert Einstein" 136 "ae@mc2.org" (fromGregorian 1905 12 1)

users2 :: [User]
users2 = [isaac, albert]

Now, just like we separate the various endpoints in UserAPI with :<|>, we are going to separate the handlers with
:<|> too! They must be provided in the same order as in in the API type.

server2 :: Server UserAPI2
server2 = return users2

:<|> return albert
:<|> return isaac

And that’s it! You can run this example in the same way that we showed for server1 and check out the data available
at /users, /albert and /isaac.

2.2.3 From combinators to handler arguments

Fine, we can write trivial webservices easily, but none of the two above use any “fancy” combinator from servant.
Let’s address this and use QueryParam, Capture and ReqBody right away. You’ll see how each occurence
of these combinators in an endpoint makes the corresponding handler receive an argument of the appropriate type
automatically. You don’t have to worry about manually looking up URL captures or query string parameters, or
decoding/encoding data from/to JSON. Never.

We are going to use the following data types and functions to implement a server for API.

type API = "position" :> Capture "x" Int :> Capture "y" Int :> Get '[JSON] Position
:<|> "hello" :> QueryParam "name" String :> Get '[JSON] HelloMessage
:<|> "marketing" :> ReqBody '[JSON] ClientInfo :> Post '[JSON] Email

data Position = Position
{ xCoord :: Int
, yCoord :: Int
} deriving Generic

instance ToJSON Position

newtype HelloMessage = HelloMessage { msg :: String }
deriving Generic

instance ToJSON HelloMessage

data ClientInfo = ClientInfo
{ clientName :: String
, clientEmail :: String
, clientAge :: Int
, clientInterestedIn :: [String]
} deriving Generic

instance FromJSON ClientInfo
instance ToJSON ClientInfo

12 Chapter 2. Tutorial

servant Documentation, Release

data Email = Email
{ from :: String
, to :: String
, subject :: String
, body :: String
} deriving Generic

instance ToJSON Email

emailForClient :: ClientInfo -> Email
emailForClient c = Email from' to' subject' body'

where from' = "great@company.com"
to' = clientEmail c
subject' = "Hey " ++ clientName c ++ ", we miss you!"
body' = "Hi " ++ clientName c ++ ",\n\n"

++ "Since you've recently turned " ++ show (clientAge c)
++ ", have you checked out our latest "
++ intercalate ", " (clientInterestedIn c)
++ " products? Give us a visit!"

We can implement handlers for the three endpoints:

server3 :: Server API
server3 = position

:<|> hello
:<|> marketing

where position :: Int -> Int -> ExceptT ServantErr IO Position
position x y = return (Position x y)

hello :: Maybe String -> ExceptT ServantErr IO HelloMessage
hello mname = return . HelloMessage $ case mname of
Nothing -> "Hello, anonymous coward"
Just n -> "Hello, " ++ n

marketing :: ClientInfo -> ExceptT ServantErr IO Email
marketing clientinfo = return (emailForClient clientinfo)

Did you see that? The types for your handlers changed to be just what we needed! In particular:

• a Capture "something" a becomes an argument of type a (for position);

• a QueryParam "something" a becomes an argument of type Maybe a (because an endpoint can tech-
nically be accessed without specifying any query string parameter, we decided to “force” handlers to be aware
that the parameter might not always be there);

• a ReqBody contentTypeList a becomes an argument of type a;

And that’s it. Here’s the example in action:

$ curl http://localhost:8081/position/1/2
{"xCoord":1,"yCoord":2}
$ curl http://localhost:8081/hello
{"msg":"Hello, anonymous coward"}
$ curl http://localhost:8081/hello?name=Alp
{"msg":"Hello, Alp"}
$ curl -X POST -d '{"clientName":"Alp Mestanogullari", "clientEmail" : "alp@foo.com", "clientAge": 25, "clientInterestedIn": ["haskell", "mathematics"]}' -H 'Accept: application/json' -H 'Content-type: application/json' http://localhost:8081/marketing
{"subject":"Hey Alp Mestanogullari, we miss you!","body":"Hi Alp Mestanogullari,\n\nSince you've recently turned 25, have you checked out our latest haskell, mathematics products? Give us a visit!","to":"alp@foo.com","from":"great@company.com"}

2.2. Serving an API 13

servant Documentation, Release

For reference, here’s a list of some combinators from servant:

• Delete, Get, Patch, Post, Put: these do not become arguments. They provide the return type of handlers,
which usually is ExceptT ServantErr IO <something>.

• Capture "something" a becomes an argument of type a.

• QueryParam "something" a, Header "something" a all become arguments of type Maybe a,
because there might be no value at all specified by the client for these.

• QueryFlag "something" gets turned into an argument of type Bool.

• QueryParams "something" a gets turned into an argument of type [a].

• ReqBody contentTypes a gets turned into an argument of type a.

2.2.4 The FromHttpApiData/ToHttpApiData classes

Wait... How does servant know how to decode the Ints from the URL? Or how to decode a ClientInfo value
from the request body? This is what this and the following two sections address.

Captures and QueryParams are represented by some textual value in URLs. Headers are similarly represented
by a pair of a header name and a corresponding (textual) value in the request’s “metadata”. How types are decoded
from headers, captures, and query params is expressed in a class FromHttpApiData (from the package http-api-
data):

class FromHttpApiData a where
{-# MINIMAL parseUrlPiece | parseQueryParam #-}
-- | Parse URL path piece.
parseUrlPiece :: Text -> Either Text a
parseUrlPiece = parseQueryParam

-- | Parse HTTP header value.
parseHeader :: ByteString -> Either Text a
parseHeader = parseUrlPiece . decodeUtf8

-- | Parse query param value.
parseQueryParam :: Text -> Either Text a
parseQueryParam = parseUrlPiece

As you can see, as long as you provide either parseUrlPiece (for Captures) or parseQueryParam (for
QueryParams), the other methods will be defined in terms of this.

http-api-data provides a decent number of instances, helpers for defining new ones, and wonderful documentation.

There’s not much else to say about these classes. You will need instances for them when using Capture,
QueryParam, QueryParams, and Header with your types. You will need FromHttpApiData instances for
server-side request handlers and ToHttpApiData instances only when using servant-client, as described in the
section about deriving haskell functions to query an API.

2.2.5 Using content-types with your data types

The same principle was operating when decoding request bodies from JSON, and responses into JSON. (JSON is just
the running example - you can do this with any content-type.)

This section introduces a couple of typeclasses provided by servant that make all of this work.

14 Chapter 2. Tutorial

http://hackage.haskell.org/package/http-api-data
http://hackage.haskell.org/package/http-api-data

servant Documentation, Release

The truth behind JSON

What exactly is JSON (the type as used in Get ’[JSON] User)? Like the 3 other content-types provided out of
the box by servant, it’s a really dumb data type.

data JSON
data PlainText
data FormUrlEncoded
data OctetStream

Obviously, this is not all there is to JSON, otherwise it would be quite pointless. Like most of the data types in servant,
JSON is mostly there as a special symbol that’s associated with encoding (resp. decoding) to (resp. from) the JSON
format. The way this association is performed can be decomposed into two steps.

The first step is to provide a proper MediaType (from http-media) representation for JSON, or for your own content-
types. If you look at the haddocks from this link, you can see that we just have to specify application/json
using the appropriate functions. In our case, we can just use (//) :: ByteString -> ByteString ->
MediaType. The precise way to specify the MediaType is to write an instance for the Accept class:

-- for reference:
class Accept ctype where

contentType :: Proxy ctype -> MediaType

instance Accept JSON where
contentType _ = "application" // "json"

The second step is centered around the MimeRender and MimeUnrender classes. These classes just let you specify
a way to encode and decode values into or from your content-type’s representation.

class Accept ctype => MimeRender ctype a where
mimeRender :: Proxy ctype -> a -> ByteString
-- alternatively readable as:
mimeRender :: Proxy ctype -> (a -> ByteString)

Given a content-type and some user type, MimeRender provides a function that encodes values of type a to lazy
ByteStrings.

In the case of JSON, this is easily dealt with! For any type a with a ToJSON instance, we can render values of that
type to JSON using Data.Aeson.encode.

instance ToJSON a => MimeRender JSON a where
mimeRender _ = encode

And now the MimeUnrender class, which lets us extract values from lazy ByteStrings, alternatively failing with
an error string.

class Accept ctype => MimeUnrender ctype a where
mimeUnrender :: Proxy ctype -> ByteString -> Either String a

We don’t have much work to do there either, Data.Aeson.eitherDecode is precisely what we need. However,
it only allows arrays and objects as toplevel JSON values and this has proven to get in our way more than help us so
we wrote our own little function around aeson and attoparsec that allows any type of JSON value at the toplevel of a
“JSON document”. Here’s the definition in case you are curious.

eitherDecodeLenient :: FromJSON a => ByteString -> Either String a
eitherDecodeLenient input = do

v :: Value <- parseOnly (Data.Aeson.Parser.value <* endOfInput) (cs input)
parseEither parseJSON v

This function is exactly what we need for our MimeUnrender instance.

2.2. Serving an API 15

https://hackage.haskell.org/package/http-media-0.6.2/docs/Network-HTTP-Media.html

servant Documentation, Release

instance FromJSON a => MimeUnrender JSON a where
mimeUnrender _ = eitherDecodeLenient

And this is all the code that lets you use JSON with ReqBody, Get, Post and friends. We can check our under-
standing by implementing support for an HTML content-type, so that users of your webservice can access an HTML
representation of the data they want, ready to be included in any HTML document, e.g. using jQuery’s load function,
simply by adding Accept: text/html to their request headers.

Case-studies: servant-blaze and servant-lucid

These days, most of the haskellers who write their HTML UIs directly from Haskell use either blaze-html or lucid.
The best option for servant is obviously to support both (and hopefully other templating solutions!). We’re first going
to look at lucid:

data HTMLLucid

Once again, the data type is just there as a symbol for the encoding/decoding functions, except that this time we will
only worry about encoding since lucid doesn’t provide a way to extract data from HTML.

instance Accept HTMLLucid where
contentType _ = "text" // "html" /: ("charset", "utf-8")

Note that this instance uses the (/:) operator from http-media which lets us specify additional information about a
content-type, like the charset here.

The rendering instances call similar functions that take types with an appropriate instance to an “abstract” HTML
representation and then write that to a ByteString.

instance ToHtml a => MimeRender HTMLLucid a where
mimeRender _ = renderBS . toHtml

-- let's also provide an instance for lucid's
-- 'Html' wrapper.
instance MimeRender HTMLLucid (Html a) where

mimeRender _ = renderBS

For blaze-html everything works very similarly:

-- For this tutorial to compile 'HTMLLucid' and 'HTMLBlaze' have to be
-- distinct. Usually you would stick to one html rendering library and then
-- you can go with one 'HTML' type.
data HTMLBlaze

instance Accept HTMLBlaze where
contentType _ = "text" // "html" /: ("charset", "utf-8")

instance ToMarkup a => MimeRender HTMLBlaze a where
mimeRender _ = renderHtml . Text.Blaze.Html.toHtml

-- while we're at it, just like for lucid we can
-- provide an instance for rendering blaze's 'Html' type
instance MimeRender HTMLBlaze Text.Blaze.Html.Html where

mimeRender _ = renderHtml

Both servant-blaze and servant-lucid let you use HTMLLucid and HTMLBlaze in any content-type list as long as
you provide an instance of the appropriate class (ToMarkup for blaze-html, ToHtml for lucid).

We can now write a webservice that uses servant-lucid to show the HTMLLucid content-type in action. We will be
serving the following API:

16 Chapter 2. Tutorial

https://api.jquery.com/load/
http://hackage.haskell.org/package/blaze-html
http://hackage.haskell.org/package/lucid
http://hackage.haskell.org/package/servant-blaze
http://hackage.haskell.org/package/servant-lucid

servant Documentation, Release

type PersonAPI = "persons" :> Get '[JSON, HTMLLucid] [Person]

where Person is defined as follows:

data Person = Person
{ firstName :: String
, lastName :: String
} deriving Generic -- for the JSON instance

instance ToJSON Person

Now, let’s teach lucid how to render a Person as a row in a table, and then a list of Persons as a table with a row
per person.

-- HTML serialization of a single person
instance ToHtml Person where

toHtml person =
tr_ $ do

td_ (toHtml $ firstName person)
td_ (toHtml $ lastName person)

-- do not worry too much about this
toHtmlRaw = toHtml

-- HTML serialization of a list of persons
instance ToHtml [Person] where
toHtml persons = table_ $ do
tr_ $ do

th_ "first name"
th_ "last name"

-- this just calls toHtml on each person of the list
-- and concatenates the resulting pieces of HTML together
foldMap toHtml persons

toHtmlRaw = toHtml

We create some Person values and serve them as a list:

people :: [Person]
people =
[Person "Isaac" "Newton"
, Person "Albert" "Einstein"
]

personAPI :: Proxy PersonAPI
personAPI = Proxy

server4 :: Server PersonAPI
server4 = return people

app2 :: Application
app2 = serve personAPI server4

And we’re good to go:

$ curl http://localhost:8081/persons
[{"lastName":"Newton","firstName":"Isaac"},{"lastName":"Einstein","firstName":"Albert"}]
$ curl -H 'Accept: text/html' http://localhost:8081/persons

2.2. Serving an API 17

servant Documentation, Release

<table><tr><td>first name</td><td>last name</td></tr><tr><td>Isaac</td><td>Newton</td></tr><tr><td>Albert</td><td>Einstein</td></tr></table>
or just point your browser to http://localhost:8081/persons

2.2.6 The ExceptT ServantErr IO monad

At the heart of the handlers is the monad they run in, namely ExceptT ServantErr IO (haddock documentation
for ExceptT). One might wonder: why this monad? The answer is that it is the simplest monad with the following
properties:

• it lets us both return a successful result (using return) or “fail” with a descriptive error (using throwError);

• it lets us perform IO, which is absolutely vital since most webservices exist as interfaces to databases that we
interact with in IO.

Let’s recall some definitions.

-- from the 'mtl' package at
newtype ExceptT e m a = ExceptT (m (Either e a))

In short, this means that a handler of type ExceptT ServantErr IO a is simply equivalent to a computation of
type IO (Either ServantErr a), that is, an IO action that either returns an error or a result.

The module Control.Monad.Except from which ExceptT comes is worth looking at. Perhaps most impor-
tantly, ExceptT is an instance of MonadError, so throwError can be used to return an error from your handler
(whereas return is enough to return a success).

Most of what you’ll be doing in your handlers is running some IO and, depending on the result, you might sometimes
want to throw an error of some kind and abort early. The next two sections cover how to do just that.

Performing IO

Another important instance from the list above is MonadIO m => MonadIO (ExceptT e m). MonadIO is a
class from the transformers package defined as:

class Monad m => MonadIO m where
liftIO :: IO a -> m a

The IO monad provides a MonadIO instance. Hence for any type e, ExceptT e IO has a MonadIO instance. So
if you want to run any kind of IO computation in your handlers, just use liftIO:

type IOAPI1 = "myfile.txt" :> Get '[JSON] FileContent

newtype FileContent = FileContent
{ content :: String }
deriving Generic

instance ToJSON FileContent

server5 :: Server IOAPI1
server5 = do

filecontent <- liftIO (readFile "myfile.txt")
return (FileContent filecontent)

18 Chapter 2. Tutorial

http://hackage.haskell.org/package/mtl-2.2.1/docs/Control-Monad-Except.html#t:ExceptT
http://hackage.haskell.org/package/mtl-2.2.1/docs/Control-Monad-Except.html#t:ExceptT
https://hackage.haskell.org/package/mtl-2.2.1/docs/Control-Monad-Except.html#t:ExceptT
http://hackage.haskell.org/package/transformers-0.4.3.0/docs/Control-Monad-IO-Class.html

servant Documentation, Release

Failing, through ServantErr

If you want to explicitly fail at providing the result promised by an endpoint using the appropriate HTTP status code
(not found, unauthorized, etc) and some error message, all you have to do is use the throwError function mentioned
above and provide it with the appropriate value of type ServantErr, which is defined as:

data ServantErr = ServantErr
{ errHTTPCode :: Int
, errReasonPhrase :: String
, errBody :: ByteString -- lazy bytestring
, errHeaders :: [Header]
}

Many standard values are provided out of the box by the Servant.Server module. If you want to use these values
but add a body or some headers, just use record update syntax:

failingHandler :: ExceptT ServantErr IO ()
failingHandler = throwError myerr

where myerr :: ServantErr
myerr = err503 { errBody = "Sorry dear user." }

Here’s an example where we return a customised 404-Not-Found error message in the response body if “myfile.txt”
isn’t there:

server6 :: Server IOAPI1
server6 = do

exists <- liftIO (doesFileExist "myfile.txt")
if exists
then liftIO (readFile "myfile.txt") >>= return . FileContent
else throwError custom404Err

where custom404Err = err404 { errBody = "myfile.txt just isn't there, please leave this server alone." }

Here’s how that server looks in action:

$ curl --verbose http://localhost:8081/myfile.txt
[snip]

* Connected to localhost (127.0.0.1) port 8081 (#0)
> GET /myfile.txt HTTP/1.1
> User-Agent: curl/7.30.0
> Host: localhost:8081
> Accept: */*
>
< HTTP/1.1 404 Not Found
[snip]
myfile.txt just isnt there, please leave this server alone.

$ echo Hello > myfile.txt

$ curl --verbose http://localhost:8081/myfile.txt
[snip]

* Connected to localhost (127.0.0.1) port 8081 (#0)
> GET /myfile.txt HTTP/1.1
> User-Agent: curl/7.30.0
> Host: localhost:8081
> Accept: */*
>
< HTTP/1.1 200 OK

2.2. Serving an API 19

servant Documentation, Release

[snip]
< Content-Type: application/json
[snip]
{"content":"Hello\n"}

2.2.7 Response headers

To add headers to your response, use addHeader. Note that this changes the type of your API, as we can see in the
following example:

type MyHandler = Get '[JSON] (Headers '[Header "X-An-Int" Int] User)

myHandler :: Server MyHandler
myHandler = return $ addHeader 1797 albert

Note that the type of addHeader x is different than the type of x!

2.2.8 Serving static files

servant-server also provides a way to just serve the content of a directory under some path in your web API. As
mentioned earlier in this document, the Raw combinator can be used in your APIs to mean “plug here any WAI
application”. Well, servant-server provides a function to get a file and directory serving WAI application, namely:

-- exported by Servant and Servant.Server
serveDirectory :: FilePath -> Server Raw

serveDirectory‘s argument must be a path to a valid directory.

Here’s an example API that will serve some static files:

type StaticAPI = "static" :> Raw

And the server:

staticAPI :: Proxy StaticAPI
staticAPI = Proxy

server7 :: Server StaticAPI
server7 = serveDirectory "static-files"

app3 :: Application
app3 = serve staticAPI server7

This server will match any request whose path starts with /static and will look for a file at the path described by
the rest of the request path, inside the static-files/ directory of the path you run the program from.

In other words: If a client requests /static/foo.txt, the server will look for a file at
./static-files/foo.txt. If that file exists it’ll succeed and serve the file. If it doesn’t exist, the han-
dler will fail with a 404 status code.

2.2.9 Nested APIs

Let’s see how you can define APIs in a modular way, while avoiding repetition. Consider this simple example:

20 Chapter 2. Tutorial

http://hackage.haskell.org/package/servant/docs/Servant-API-ResponseHeaders.html

servant Documentation, Release

type UserAPI3 = -- view the user with given userid, in JSON
Capture "userid" Int :> Get '[JSON] User

:<|> -- delete the user with given userid. empty response
Capture "userid" Int :> Delete '[] ()

We can instead factor out the userid:

type UserAPI4 = Capture "userid" Int :>
(Get '[JSON] User
:<|> Delete '[] ()
)

However, you have to be aware that this has an effect on the type of the corresponding Server:

Server UserAPI3 = (Int -> ExceptT ServantErr IO User)
:<|> (Int -> ExceptT ServantErr IO ())

Server UserAPI4 = Int -> (ExceptT ServantErr IO User
:<|> ExceptT ServantErr IO ()
)

In the first case, each handler receives the userid argument. In the latter, the whole Server takes the userid and has
handlers that are just computations in ExceptT, with no arguments. In other words:

server8 :: Server UserAPI3
server8 = getUser :<|> deleteUser

where getUser :: Int -> ExceptT ServantErr IO User
getUser _userid = error "..."

deleteUser :: Int -> ExceptT ServantErr IO ()
deleteUser _userid = error "..."

-- notice how getUser and deleteUser
-- have a different type! no argument anymore,
-- the argument directly goes to the whole Server
server9 :: Server UserAPI4
server9 userid = getUser userid :<|> deleteUser userid

where getUser :: Int -> ExceptT ServantErr IO User
getUser = error "..."

deleteUser :: Int -> ExceptT ServantErr IO ()
deleteUser = error "..."

Note that there’s nothing special about Capture that lets you “factor it out”: this can be done with any combinator.
Here are a few examples of APIs with a combinator factored out for which we can write a perfectly valid Server.

-- we just factor out the "users" path fragment
type API1 = "users" :>

(Get '[JSON] [User] -- user listing
:<|> Capture "userid" Int :> Get '[JSON] User -- view a particular user
)

-- we factor out the Request Body
type API2 = ReqBody '[JSON] User :>

(Get '[JSON] User -- just display the same user back, don't register it
:<|> Post '[JSON] () -- register the user. empty response

2.2. Serving an API 21

servant Documentation, Release

)

-- we factor out a Header
type API3 = Header "Authorization" Token :>

(Get '[JSON] SecretData -- get some secret data, if authorized
:<|> ReqBody '[JSON] SecretData :> Post '[] () -- add some secret data, if authorized
)

newtype Token = Token ByteString
newtype SecretData = SecretData ByteString

This approach lets you define APIs modularly and assemble them all into one big API type only at the end.

type UsersAPI =
Get '[JSON] [User] -- list users

:<|> ReqBody '[JSON] User :> Post '[] () -- add a user
:<|> Capture "userid" Int :>

(Get '[JSON] User -- view a user
:<|> ReqBody '[JSON] User :> Put '[] () -- update a user
:<|> Delete '[] () -- delete a user

)

usersServer :: Server UsersAPI
usersServer = getUsers :<|> newUser :<|> userOperations

where getUsers :: ExceptT ServantErr IO [User]
getUsers = error "..."

newUser :: User -> ExceptT ServantErr IO ()
newUser = error "..."

userOperations userid =
viewUser userid :<|> updateUser userid :<|> deleteUser userid

where
viewUser :: Int -> ExceptT ServantErr IO User
viewUser = error "..."

updateUser :: Int -> User -> ExceptT ServantErr IO ()
updateUser = error "..."

deleteUser :: Int -> ExceptT ServantErr IO ()
deleteUser = error "..."

type ProductsAPI =
Get '[JSON] [Product] -- list products

:<|> ReqBody '[JSON] Product :> Post '[] () -- add a product
:<|> Capture "productid" Int :>

(Get '[JSON] Product -- view a product
:<|> ReqBody '[JSON] Product :> Put '[] () -- update a product
:<|> Delete '[] () -- delete a product

)

data Product = Product { productId :: Int }

productsServer :: Server ProductsAPI
productsServer = getProducts :<|> newProduct :<|> productOperations

where getProducts :: ExceptT ServantErr IO [Product]

22 Chapter 2. Tutorial

servant Documentation, Release

getProducts = error "..."

newProduct :: Product -> ExceptT ServantErr IO ()
newProduct = error "..."

productOperations productid =
viewProduct productid :<|> updateProduct productid :<|> deleteProduct productid

where
viewProduct :: Int -> ExceptT ServantErr IO Product
viewProduct = error "..."

updateProduct :: Int -> Product -> ExceptT ServantErr IO ()
updateProduct = error "..."

deleteProduct :: Int -> ExceptT ServantErr IO ()
deleteProduct = error "..."

type CombinedAPI = "users" :> UsersAPI
:<|> "products" :> ProductsAPI

server10 :: Server CombinedAPI
server10 = usersServer :<|> productsServer

Finally, we can realize the user and product APIs are quite similar and abstract that away:

-- API for values of type 'a'
-- indexed by values of type 'i'
type APIFor a i =

Get '[JSON] [a] -- list 'a's
:<|> ReqBody '[JSON] a :> Post '[] () -- add an 'a'
:<|> Capture "id" i :>

(Get '[JSON] a -- view an 'a' given its "identifier" of type 'i'
:<|> ReqBody '[JSON] a :> Put '[] () -- update an 'a'
:<|> Delete '[] () -- delete an 'a'

)

-- Build the appropriate 'Server'
-- given the handlers of the right type.
serverFor :: ExceptT ServantErr IO [a] -- handler for listing of 'a's

-> (a -> ExceptT ServantErr IO ()) -- handler for adding an 'a'
-> (i -> ExceptT ServantErr IO a) -- handler for viewing an 'a' given its identifier of type 'i'
-> (i -> a -> ExceptT ServantErr IO ()) -- updating an 'a' with given id
-> (i -> ExceptT ServantErr IO ()) -- deleting an 'a' given its id
-> Server (APIFor a i)

serverFor = error "..."
-- implementation left as an exercise. contact us on IRC
-- or the mailing list if you get stuck!

2.2.10 Using another monad for your handlers

Remember how Server turns combinators for HTTP methods into ExceptT ServantErr IO? Well, actually,
there’s more to that. Server is actually a simple type synonym.

type Server api = ServerT api (ExceptT ServantErr IO)

ServerT is the actual type family that computes the required types for the handlers that’s part of the HasServer

2.2. Serving an API 23

servant Documentation, Release

class. It’s like Server except that it takes another parameter which is the monad you want your handlers to run in,
or more generally the return types of your handlers. This third parameter is used for specifying the return type of
the handler for an endpoint, e.g when computing ServerT (Get ’[JSON] Person) SomeMonad. The result
would be SomeMonad Person.

The first and main question one might have then is: how do we write handlers that run in another monad? How can
we “bring back” the value from a given monad into something servant can understand?

Natural transformations

If we have a function that gets us from an m a to an n a, for any a, what do we have?

newtype m :~> n = Nat { unNat :: forall a. m a -> n a}

For example:

listToMaybeNat :: [] :~> Maybe
listToMaybeNat = Nat listToMaybe -- from Data.Maybe

(Nat comes from “natural transformation”, in case you’re wondering.)

So if you want to write handlers using another monad/type than ExceptT ServantErr IO, say the Reader
String monad, the first thing you have to prepare is a function:

readerToHandler :: Reader String :~> ExceptT ServantErr IO

Let’s start with readerToHandler’. We obviously have to run the Reader computation by supplying it with a
String, like "hi". We get an a out from that and can then just return it into ExceptT. We can then just wrap
that function with the Nat constructor to make it have the fancier type.

readerToHandler' :: forall a. Reader String a -> ExceptT ServantErr IO a
readerToHandler' r = return (runReader r "hi")

readerToHandler :: Reader String :~> ExceptT ServantErr IO
readerToHandler = Nat readerToHandler'

We can write some simple webservice with the handlers running in Reader String.

type ReaderAPI = "a" :> Get '[JSON] Int
:<|> "b" :> Get '[JSON] String

readerAPI :: Proxy ReaderAPI
readerAPI = Proxy

readerServerT :: ServerT ReaderAPI (Reader String)
readerServerT = a :<|> b

where a :: Reader String Int
a = return 1797

b :: Reader String String
b = ask

We unfortunately can’t use readerServerT as an argument of serve, because serve wants a Server
ReaderAPI, i.e., with handlers running in ExceptT ServantErr IO. But there’s a simple solution to this.

24 Chapter 2. Tutorial

servant Documentation, Release

Enter enter

That’s right. We have just written readerToHandler, which is exactly what we would need to apply to all handlers
to make the handlers have the right type for serve. Being cumbersome to do by hand, we provide a function enter
which takes a natural transformation between two parametrized types m and n and a ServerT someapi m, and
returns a ServerT someapi n.

In our case, we can wrap up our little webservice by using enter readerToHandler on our handlers.

readerServer :: Server ReaderAPI
readerServer = enter readerToHandler readerServerT

app4 :: Application
app4 = serve readerAPI readerServer

This is the webservice in action:

$ curl http://localhost:8081/a
1797
$ curl http://localhost:8081/b
"hi"

2.2.11 Conclusion

You’re now equipped to write webservices/web-applications using servant. The rest of this document focuses on
servant-client, servant-js and servant-docs.

2.3 Querying an API

While defining handlers that serve an API has a lot to it, querying an API is simpler: we do not care about what
happens inside the webserver, we just need to know how to talk to it and get a response back. Except that we usually
have to write the querying functions by hand because the structure of the API isn’t a first class citizen and can’t be
inspected to generate a bunch of client-side functions.

servant however has a way to inspect APIs, because APIs are just Haskell types and (GHC) Haskell lets us do quite
a few things with types. In the same way that we look at an API type to deduce the types the handlers should have,
we can inspect the structure of the API to derive Haskell functions that take one argument for each occurence of
Capture, ReqBody, QueryParam and friends. By derive, we mean that there’s no code generation involved, the
functions are defined just by the structure of the API type.

The source for this tutorial section is a literate haskell file, so first we need to have some language extensions and
imports:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE TypeOperators #-}

module Client where

import Control.Monad.Trans.Except
import Data.Aeson
import Data.Proxy
import GHC.Generics
import Network.HTTP.Client (Manager, newManager, defaultManagerSettings)
import Servant.API

2.3. Querying an API 25

servant Documentation, Release

import Servant.Client
import System.IO.Unsafe

Also, we need examples for some domain specific data types:

data Position = Position
{ x :: Int
, y :: Int
} deriving (Show, Generic)

instance FromJSON Position

newtype HelloMessage = HelloMessage { msg :: String }
deriving (Show, Generic)

instance FromJSON HelloMessage

data ClientInfo = ClientInfo
{ clientName :: String
, clientEmail :: String
, clientAge :: Int
, clientInterestedIn :: [String]
} deriving Generic

instance ToJSON ClientInfo

data Email = Email
{ from :: String
, to :: String
, subject :: String
, body :: String
} deriving (Show, Generic)

instance FromJSON Email

Enough chitchat, let’s see an example. Consider the following API type from the previous section:

type API = "position" :> Capture "x" Int :> Capture "y" Int :> Get '[JSON] Position
:<|> "hello" :> QueryParam "name" String :> Get '[JSON] HelloMessage
:<|> "marketing" :> ReqBody '[JSON] ClientInfo :> Post '[JSON] Email

What we are going to get with servant-client here is 3 functions, one to query each endpoint:

position :: Int -- ^ value for "x"
-> Int -- ^ value for "y"
-> ExceptT ServantError IO Position

hello :: Maybe String -- ^ an optional value for "name"
-> ExceptT ServantError IO HelloMessage

marketing :: ClientInfo -- ^ value for the request body
-> ExceptT ServantError IO Email

Each function makes available as an argument any value that the response may depend on, as evidenced in the API
type. How do we get these functions? By calling the function client. It takes three arguments:

• a Proxy to your API,

• a BaseUrl, consisting of the protocol, the host, the port and an optional subpath – this basically tells client
where the service that you want to query is hosted,

26 Chapter 2. Tutorial

servant Documentation, Release

• a Manager, (from http-client) which manages http connections.

api :: Proxy API
api = Proxy

{-# NOINLINE __manager #-}
__manager :: Manager
__manager = unsafePerformIO $ newManager defaultManagerSettings

position :<|> hello :<|> marketing =
client api (BaseUrl Http "localhost" 8081 "") __manager

(Yes, the usage of unsafePerformIO is very ugly, we know. Hopefully soon it’ll be possible to do without.)

As you can see in the code above, we just “pattern match our way” to these functions. If we try to derive less or more
functions than there are endpoints in the API, we obviously get an error. The BaseUrl value there is just:

-- | URI scheme to use
data Scheme =

Http -- ^ http://
| Https -- ^ https://
deriving

-- | Simple data type to represent the target of HTTP requests
-- for servant's automatically-generated clients.
data BaseUrl = BaseUrl

{ baseUrlScheme :: Scheme -- ^ URI scheme to use
, baseUrlHost :: String -- ^ host (eg "haskell.org")
, baseUrlPort :: Int -- ^ port (eg 80)
}

That’s it. Let’s now write some code that uses our client functions.

queries :: ExceptT ServantError IO (Position, HelloMessage, Email)
queries = do

pos <- position 10 10
message <- hello (Just "servant")
em <- marketing (ClientInfo "Alp" "alp@foo.com" 26 ["haskell", "mathematics"])
return (pos, message, em)

run :: IO ()
run = do
res <- runExceptT queries
case res of
Left err -> putStrLn $ "Error: " ++ show err
Right (pos, message, em) -> do

print pos
print message
print em

Here’s the output of the above code running against the appropriate server:

Position {x = 10, y = 10}
HelloMessage {msg = "Hello, servant"}
Email {from = "great@company.com", to = "alp@foo.com", subject = "Hey Alp, we miss you!", body = "Hi Alp,\n\nSince you've recently turned 26, have you checked out our latest haskell, mathematics products? Give us a visit!"}

The types of the arguments for the functions are the same as for (server-side) request handlers. You now know how to
use servant-client!

2.3. Querying an API 27

http://hackage.haskell.org/package/http-client

servant Documentation, Release

2.4 Generating Javascript functions to query an API

We will now see how servant lets you turn an API type into javascript functions that you can call to query a webservice.

For this, we will consider a simple page divided in two parts. At the top, we will have a search box that lets us search in
a list of Haskell books by author/title with a list of results that gets updated every time we enter or remove a character,
while at the bottom we will be able to see the classical probabilistic method to approximate pi, using a webservice to
get random points. Finally, we will serve an HTML file along with a couple of Javascript files, among which one that’s
automatically generated from the API type and which will provide ready-to-use functions to query your API.

The source for this tutorial section is a literate haskell file, so first we need to have some language extensions and
imports:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TypeOperators #-}

module Javascript where

import Control.Monad.IO.Class
import Data.Aeson
import Data.Proxy
import Data.Text as T (Text)
import Data.Text.IO as T (writeFile, readFile)
import GHC.Generics
import Language.Javascript.JQuery
import Network.Wai
import Network.Wai.Handler.Warp
import qualified Data.Text as T
import Servant
import Servant.JS
import System.Random

Now let’s have the API type(s) and the accompanying datatypes.

type API = "point" :> Get '[JSON] Point
:<|> "books" :> QueryParam "q" Text :> Get '[JSON] (Search Book)

type API' = API :<|> Raw

data Point = Point
{ x :: Double
, y :: Double
} deriving Generic

instance ToJSON Point

data Search a = Search
{ query :: Text
, results :: [a]
} deriving Generic

mkSearch :: Text -> [a] -> Search a
mkSearch = Search

instance ToJSON a => ToJSON (Search a)

data Book = Book

28 Chapter 2. Tutorial

http://en.wikipedia.org/wiki/Approximations_of_%CF%80#Summing_a_circle.27s_area

servant Documentation, Release

{ author :: Text
, title :: Text
, year :: Int
} deriving Generic

instance ToJSON Book

book :: Text -> Text -> Int -> Book
book = Book

We need a “book database”. For the purpose of this guide, let’s restrict ourselves to the following books.

books :: [Book]
books =

[book "Paul Hudak" "The Haskell School of Expression: Learning Functional Programming through Multimedia" 2000
, book "Bryan O'Sullivan, Don Stewart, and John Goerzen" "Real World Haskell" 2008
, book "Miran Lipovača" "Learn You a Haskell for Great Good!" 2011
, book "Graham Hutton" "Programming in Haskell" 2007
, book "Simon Marlow" "Parallel and Concurrent Programming in Haskell" 2013
, book "Richard Bird" "Introduction to Functional Programming using Haskell" 1998
]

Now, given an optional search string q, we want to perform a case insensitive search in that list of books. We’re
obviously not going to try and implement the best possible algorithm, this is out of scope for this tutorial. The
following simple linear scan will do, given how small our list is.

searchBook :: Monad m => Maybe Text -> m (Search Book)
searchBook Nothing = return (mkSearch "" books)
searchBook (Just q) = return (mkSearch q books')

where books' = filter (\b -> q' `T.isInfixOf` T.toLower (author b)
|| q' `T.isInfixOf` T.toLower (title b)

)
books

q' = T.toLower q

We also need an endpoint that generates random points (x, y) with -1 <= x,y <= 1. The code below uses
random‘s System.Random.

randomPoint :: MonadIO m => m Point
randomPoint = liftIO . getStdRandom $ \g ->
let (rx, g') = randomR (-1, 1) g

(ry, g'') = randomR (-1, 1) g'
in (Point rx ry, g'')

If we add static file serving, our server is now complete.

api :: Proxy API
api = Proxy

api' :: Proxy API'
api' = Proxy

server :: Server API
server = randomPoint

:<|> searchBook

server' :: Server API'
server' = server

2.4. Generating Javascript functions to query an API 29

http://hackage.haskell.org/package/random

servant Documentation, Release

:<|> serveDirectory "static"

app :: Application
app = serve api' server'

main :: IO ()
main = run 8000 app

Why two different API types, proxies and servers though? Simply because we don’t want to generate javascript
functions for the Raw part of our API type, so we need a Proxy for our API type API’ without its Raw endpoint.

Very similarly to how one can derive haskell functions, we can derive the javascript with just a simple function call to
jsForAPI from Servant.JQuery.

apiJS :: Text
apiJS = jsForAPI api vanillaJS

This Text contains 2 Javascript functions, ‘getPoint’ and ‘getBooks’:

var getPoint = function(onSuccess, onError)
{

var xhr = new XMLHttpRequest();
xhr.open('GET', '/point', true);
xhr.setRequestHeader("Accept","application/json");
xhr.onreadystatechange = function (e) {
if (xhr.readyState == 4) {

if (xhr.status == 204 || xhr.status == 205) {
onSuccess();

} else if (xhr.status >= 200 && xhr.status < 300) {
var value = JSON.parse(xhr.responseText);
onSuccess(value);

} else {
var value = JSON.parse(xhr.responseText);
onError(value);

}
}

}
xhr.send(null);

}

var getBooks = function(q, onSuccess, onError)
{

var xhr = new XMLHttpRequest();
xhr.open('GET', '/books' + '?q=' + encodeURIComponent(q), true);
xhr.setRequestHeader("Accept","application/json");
xhr.onreadystatechange = function (e) {
if (xhr.readyState == 4) {

if (xhr.status == 204 || xhr.status == 205) {
onSuccess();

} else if (xhr.status >= 200 && xhr.status < 300) {
var value = JSON.parse(xhr.responseText);
onSuccess(value);

} else {
var value = JSON.parse(xhr.responseText);
onError(value);

}
}

}
xhr.send(null);

30 Chapter 2. Tutorial

servant Documentation, Release

}

We created a directory static that contains two static files: index.html, which is the entrypoint to our little web
application; and ui.js, which contains some hand-written javascript. This javascript code assumes the two generated
functions getPoint and getBooks in scope. Therefore we need to write the generated javascript into a file:

writeJSFiles :: IO ()
writeJSFiles = do

T.writeFile "static/api.js" apiJS
jq <- T.readFile =<< Language.Javascript.JQuery.file
T.writeFile "static/jq.js" jq

(We’re also writing the jquery library into a file, as it’s also used by ui.js.) static/api.js will be included in
index.html and the two generated functions will therefore be available in ui.js.

And we’re good to go. You can start the main function of this file and go to http://localhost:8000/. Start
typing in the name of one of the authors in our database or part of a book title, and check out how long it takes to
approximate pi using the method mentioned above.

2.5 Documenting an API

The source for this tutorial section is a literate haskell file, so first we need to have some language extensions and
imports:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TypeOperators #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}

module Docs where

import Data.ByteString.Lazy (ByteString)
import Data.Proxy
import Data.Text.Lazy.Encoding (encodeUtf8)
import Data.Text.Lazy (pack)
import Network.HTTP.Types
import Network.Wai
import Servant.API
import Servant.Docs
import Servant.Server

And we’ll import some things from one of our earlier modules (Serving an API):

import Server (Email(..), ClientInfo(..), Position(..), HelloMessage(..),
server3, emailForClient)

Like client function generation, documentation generation amounts to inspecting the API type and extracting all the
data we need to then present it in some format to users of your API.

This time however, we have to assist servant. While it is able to deduce a lot of things about our API, it can’t
magically come up with descriptions of the various pieces of our APIs that are human-friendly and explain what’s
going on “at the business-logic level”. A good example to study for documentation generation is our webservice with
the /position, /hello and /marketing endpoints from earlier:

2.5. Documenting an API 31

servant Documentation, Release

type ExampleAPI = "position" :> Capture "x" Int :> Capture "y" Int :> Get '[JSON] Position
:<|> "hello" :> QueryParam "name" String :> Get '[JSON] HelloMessage
:<|> "marketing" :> ReqBody '[JSON] ClientInfo :> Post '[JSON] Email

exampleAPI :: Proxy ExampleAPI
exampleAPI = Proxy

While servant can see e.g. that there are 3 endpoints and that the response bodies will be in JSON, it doesn’t know
what influence the captures, parameters, request bodies and other combinators have on the webservice. This is where
some manual work is required.

For every capture, request body, response body, query param, we have to give some explanations about how it in-
fluences the response, what values are possible and the likes. Here’s how it looks like for the parameters we have
above.

instance ToCapture (Capture "x" Int) where
toCapture _ =
DocCapture "x" -- name

"(integer) position on the x axis" -- description

instance ToCapture (Capture "y" Int) where
toCapture _ =
DocCapture "y" -- name

"(integer) position on the y axis" -- description

instance ToSample Position where
toSamples _ = singleSample (Position 3 14) -- example of output

instance ToParam (QueryParam "name" String) where
toParam _ =
DocQueryParam "name" -- name

["Alp", "John Doe", "..."] -- example of values (not necessarily exhaustive)
"Name of the person to say hello to." -- description
Normal -- Normal, List or Flag

instance ToSample HelloMessage where
toSamples _ =
[("When a value is provided for 'name'", HelloMessage "Hello, Alp")
, ("When 'name' is not specified", HelloMessage "Hello, anonymous coward")
]
-- mutliple examples to display this time

ci :: ClientInfo
ci = ClientInfo "Alp" "alp@foo.com" 26 ["haskell", "mathematics"]

instance ToSample ClientInfo where
toSamples _ = singleSample ci

instance ToSample Email where
toSamples _ = singleSample (emailForClient ci)

Types that are used as request or response bodies have to instantiate the ToSample typeclass which lets you specify
one or more examples of values. Captures and QueryParams have to instantiate their respective ToCapture
and ToParam classes and provide a name and some information about the concrete meaning of that argument, as
illustrated in the code above.

With all of this, we can derive docs for our API.

32 Chapter 2. Tutorial

servant Documentation, Release

apiDocs :: API
apiDocs = docs exampleAPI

API is a type provided by servant-docs that stores all the information one needs about a web API in order to generate
documentation in some format. Out of the box, servant-docs only provides a pretty documentation printer that outputs
Markdown, but the servant-pandoc package can be used to target many useful formats.

servant‘s markdown pretty printer is a function named markdown.

markdown :: API -> String

That lets us see what our API docs look down in markdown, by looking at markdown apiDocs.

Welcome

This is our super webservice's API.

Enjoy!

GET /hello

GET Parameters:

- name
- **Values**: *Alp, John Doe, ...*
- **Description**: Name of the person to say hello to.

Response:

- Status code 200
- Headers: []

- Supported content types are:

- `application/json`

- When a value is provided for 'name'

```javascript
{"msg":"Hello, Alp"}
```

- When 'name' is not specified

```javascript
{"msg":"Hello, anonymous coward"}
```

POST /marketing

Request:

- Supported content types are:

- `application/json`

- Example: `application/json`

2.5. Documenting an API 33

http://en.wikipedia.org/wiki/Markdown
http://hackage.haskell.org/package/servant-pandoc

servant Documentation, Release

```javascript
{"email":"alp@foo.com","interested_in":["haskell","mathematics"],"age":26,"name":"Alp"}
```

Response:

- Status code 201
- Headers: []

- Supported content types are:

- `application/json`

- Response body as below.

```javascript
{"subject":"Hey Alp, we miss you!","body":"Hi Alp,\n\nSince you've recently turned 26, have you checked out our latest haskell, mathematics products? Give us a visit!","to":"alp@foo.com","from":"great@company.com"}
```

GET /position/:x/:y

Captures:

- *x*: (integer) position on the x axis
- *y*: (integer) position on the y axis

Response:

- Status code 200
- Headers: []

- Supported content types are:

- `application/json`

- Response body as below.

```javascript
{"x":3,"y":14}
```

However, we can also add one or more introduction sections to the document. We just need to tweak the way we
generate apiDocs. We will also convert the content to a lazy ByteString since this is what wai expects for Raw
endpoints.

docsBS :: ByteString
docsBS = encodeUtf8

. pack

. markdown
$ docsWithIntros [intro] exampleAPI

where intro = DocIntro "Welcome" ["This is our super webservice's API.", "Enjoy!"]

docsWithIntros just takes an additional parameter, a list of DocIntros that must be displayed before any
endpoint docs.

We can now serve the API and the API docs with a simple server.

34 Chapter 2. Tutorial

servant Documentation, Release

type DocsAPI = ExampleAPI :<|> Raw

api :: Proxy DocsAPI
api = Proxy

server :: Server DocsAPI
server = Server.server3 :<|> serveDocs

where serveDocs _ respond =
respond $ responseLBS ok200 [plain] docsBS

plain = ("Content-Type", "text/plain")

app :: Application
app = serve api server

And if you spin up this server and request anything else than /position, /hello and /marketing, you will
see the API docs in markdown. This is because serveDocs is attempted if the 3 other endpoints don’t match and
systematically succeeds since its definition is to just return some fixed bytestring with the text/plain content type.

2.5. Documenting an API 35

servant Documentation, Release

36 Chapter 2. Tutorial

CHAPTER 3

Helpful Links

• the central documentation (this site): haskell-servant.readthedocs.org

• the github repo: github.com/haskell-servant/servant

• the issue tracker (Feel free to create issues and submit PRs!): https://github.com/haskell-servant/servant/issues

• the irc channel: #servant on freenode

• the mailing list: groups.google.com/forum/#!forum/haskell-servant

• blog posts and videos and slides of some talks on servant: haskell-servant.github.io

• the servant packages on hackage:

– hackage.haskell.org/package/servant

– hackage.haskell.org/package/servant-server

– hackage.haskell.org/package/servant-client

– hackage.haskell.org/package/servant-blaze

– hackage.haskell.org/package/servant-lucid

– hackage.haskell.org/package/servant-cassava

– hackage.haskell.org/package/servant-docs

– hackage.haskell.org/package/servant-foreign

– hackage.haskell.org/package/servant-js

– hackage.haskell.org/package/servant-mock

37

http://haskell-servant.readthedocs.org/
https://github.com/haskell-servant/servant
https://github.com/haskell-servant/servant/issues
https://groups.google.com/forum/#!forum/haskell-servant
http://haskell-servant.github.io
http://hackage.haskell.org/package/servant
http://hackage.haskell.org/package/servant-server
http://hackage.haskell.org/package/servant-client
http://hackage.haskell.org/package/servant-blaze
http://hackage.haskell.org/package/servant-lucid
http://hackage.haskell.org/package/servant-cassava
http://hackage.haskell.org/package/servant-docs
http://hackage.haskell.org/package/servant-foreign
http://hackage.haskell.org/package/servant-js
http://hackage.haskell.org/package/servant-mock

	Introduction
	Tutorial
	A web API as a type
	Serving an API
	Querying an API
	Generating Javascript functions to query an API
	Documenting an API

	Helpful Links

