Serving an API

Enough chit-chat about type-level combinators and representing an API as a type. Can we have a webservice already?

A first example

Equipped with some basic knowledge about the way we represent APIs, let’s now write our first webservice.

The source for this tutorial section is a literate haskell file, so first we need to have some language extensions and imports:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeOperators #-}

module Server where

import Prelude ()
import Prelude.Compat

import Control.Monad.Except
import Control.Monad.Reader
import Data.Aeson.Compat
import Data.Aeson.Types
import Data.Attoparsec.ByteString
import Data.ByteString (ByteString)
import Data.List
import Data.Maybe
import Data.String.Conversions
import Data.Time.Calendar
import GHC.Generics
import Lucid
import Network.HTTP.Media ((//), (/:))
import Network.Wai
import Network.Wai.Handler.Warp
import Servant
import System.Directory
import Text.Blaze
import Text.Blaze.Html.Renderer.Utf8
import qualified Data.Aeson.Parser
import qualified Text.Blaze.Html

Important: the Servant module comes from the servant-server package, the one that lets us run webservers that implement a particular API type. It reexports all the types from the servant package that let you declare API types as well as everything you need to turn your request handlers into a fully-fledged webserver. This means that in your applications, you can just add servant-server as a dependency, import Servant and not worry about anything else.

We will write a server that will serve the following API.

type UserAPI1 = "users" :> Get '[JSON] [User]

Here’s what we would like to see when making a GET request to /users.

[ {"name": "Isaac Newton", "age": 372, "email": "isaac@newton.co.uk", "registration_date": "1683-03-01"}
, {"name": "Albert Einstein", "age": 136, "email": "ae@mc2.org", "registration_date": "1905-12-01"}
]

Now let’s define our User data type and write some instances for it.

data User = User
  { name :: String
  , age :: Int
  , email :: String
  , registration_date :: Day
  } deriving (Eq, Show, Generic)

instance ToJSON User

Nothing funny going on here. But we now can define our list of two users.

users1 :: [User]
users1 =
  [ User "Isaac Newton"    372 "isaac@newton.co.uk" (fromGregorian 1683  3 1)
  , User "Albert Einstein" 136 "ae@mc2.org"         (fromGregorian 1905 12 1)
  ]

We can now take care of writing the actual webservice that will handle requests to such an API. This one will be very simple, being reduced to just a single endpoint. The type of the web application is determined by the API type, through a type family named Server. (Type families are just functions that take types as input and return types.) The Server type family will compute the right type that a bunch of request handlers should have just from the corresponding API type.

The first thing to know about the Server type family is that behind the scenes it will drive the routing, letting you focus only on the business logic. The second thing to know is that for each endpoint, your handlers will by default run in the Handler monad. This is overridable very easily, as explained near the end of this guide. Third thing, the type of the value returned in that monad must be the same as the second argument of the HTTP method combinator used for the corresponding endpoint. In our case, it means we must provide a handler of type Handler [User]. Well, we have a monad, let’s just return our list:

server1 :: Server UserAPI1
server1 = return users1

That’s it. Now we can turn server into an actual webserver using wai and warp:

userAPI :: Proxy UserAPI1
userAPI = Proxy

-- 'serve' comes from servant and hands you a WAI Application,
-- which you can think of as an "abstract" web application,
-- not yet a webserver.
app1 :: Application
app1 = serve userAPI server1

The userAPI bit is, alas, boilerplate (we need it to guide type inference). But that’s about as much boilerplate as you get.

And we’re done! Let’s run our webservice on the port 8081.

main :: IO ()
main = run 8081 app1

You can put this all into a file or just grab servant’s repo and look at the doc/tutorial directory. This code (the source of this web page) is in doc/tutorial/Server.lhs.

If you run it, you can go to http://localhost:8081/users in your browser or query it with curl and you see:

$ curl http://localhost:8081/users
[{"email":"isaac@newton.co.uk","registration_date":"1683-03-01","age":372,"name":"Isaac Newton"},{"email":"ae@mc2.org","registration_date":"1905-12-01","age":136,"name":"Albert Einstein"}]

More endpoints

What if we want more than one endpoint? Let’s add /albert and /isaac to view the corresponding users encoded in JSON.

type UserAPI2 = "users" :> Get '[JSON] [User]
           :<|> "albert" :> Get '[JSON] User
           :<|> "isaac" :> Get '[JSON] User

And let’s adapt our code a bit.

isaac :: User
isaac = User "Isaac Newton" 372 "isaac@newton.co.uk" (fromGregorian 1683 3 1)

albert :: User
albert = User "Albert Einstein" 136 "ae@mc2.org" (fromGregorian 1905 12 1)

users2 :: [User]
users2 = [isaac, albert]

Now, just like we separate the various endpoints in UserAPI with :<|>, we are going to separate the handlers with :<|> too! They must be provided in the same order as in in the API type.

server2 :: Server UserAPI2
server2 = return users2
     :<|> return albert
     :<|> return isaac

And that’s it! You can run this example in the same way that we showed for server1 and check out the data available at /users, /albert and /isaac.

From combinators to handler arguments

Fine, we can write trivial webservices easily, but none of the two above use any “fancy” combinator from servant. Let’s address this and use QueryParam, Capture and ReqBody right away. You’ll see how each occurrence of these combinators in an endpoint makes the corresponding handler receive an argument of the appropriate type automatically. You don’t have to worry about manually looking up URL captures or query string parameters, or decoding/encoding data from/to JSON. Never.

We are going to use the following data types and functions to implement a server for API.

type API = "position" :> Capture "x" Int :> Capture "y" Int :> Get '[JSON] Position
      :<|> "hello" :> QueryParam "name" String :> Get '[JSON] HelloMessage
      :<|> "marketing" :> ReqBody '[JSON] ClientInfo :> Post '[JSON] Email

data Position = Position
  { xCoord :: Int
  , yCoord :: Int
  } deriving Generic

instance ToJSON Position

newtype HelloMessage = HelloMessage { msg :: String }
  deriving Generic

instance ToJSON HelloMessage

data ClientInfo = ClientInfo
  { clientName :: String
  , clientEmail :: String
  , clientAge :: Int
  , clientInterestedIn :: [String]
  } deriving Generic

instance FromJSON ClientInfo
instance ToJSON ClientInfo

data Email = Email
  { from :: String
  , to :: String
  , subject :: String
  , body :: String
  } deriving Generic

instance ToJSON Email

emailForClient :: ClientInfo -> Email
emailForClient c = Email from' to' subject' body'

  where from'    = "great@company.com"
        to'      = clientEmail c
        subject' = "Hey " ++ clientName c ++ ", we miss you!"
        body'    = "Hi " ++ clientName c ++ ",\n\n"
                ++ "Since you've recently turned " ++ show (clientAge c)
                ++ ", have you checked out our latest "
                ++ intercalate ", " (clientInterestedIn c)
                ++ " products? Give us a visit!"

We can implement handlers for the three endpoints:

server3 :: Server API
server3 = position
     :<|> hello
     :<|> marketing

  where position :: Int -> Int -> Handler Position
        position x y = return (Position x y)

        hello :: Maybe String -> Handler HelloMessage
        hello mname = return . HelloMessage $ case mname of
          Nothing -> "Hello, anonymous coward"
          Just n  -> "Hello, " ++ n

        marketing :: ClientInfo -> Handler Email
        marketing clientinfo = return (emailForClient clientinfo)

Did you see that? The types for your handlers changed to be just what we needed! In particular:

  • a Capture "something" a becomes an argument of type a (for position);
  • a QueryParam "something" a becomes an argument of type Maybe a (because an endpoint can technically be accessed without specifying any query string parameter, we decided to “force” handlers to be aware that the parameter might not always be there);
  • a ReqBody contentTypeList a becomes an argument of type a;

And that’s it. Here’s the example in action:

$ curl http://localhost:8081/position/1/2
{"xCoord":1,"yCoord":2}
$ curl http://localhost:8081/hello
{"msg":"Hello, anonymous coward"}
$ curl http://localhost:8081/hello?name=Alp
{"msg":"Hello, Alp"}
$ curl -X POST -d '{"clientName":"Alp Mestanogullari", "clientEmail" : "alp@foo.com", "clientAge": 25, "clientInterestedIn": ["haskell", "mathematics"]}' -H 'Accept: application/json' -H 'Content-type: application/json' http://localhost:8081/marketing
{"subject":"Hey Alp Mestanogullari, we miss you!","body":"Hi Alp Mestanogullari,\n\nSince you've recently turned 25, have you checked out our latest haskell, mathematics products? Give us a visit!","to":"alp@foo.com","from":"great@company.com"}

For reference, here’s a list of some combinators from servant:

  • Delete, Get, Patch, Post, Put: these do not become arguments. They provide the return type of handlers, which usually is Handler <something>.
  • Capture "something" a becomes an argument of type a.
  • QueryParam "something" a, Header "something" a all become arguments of type Maybe a, because there might be no value at all specified by the client for these.
  • QueryFlag "something" gets turned into an argument of type Bool.
  • QueryParams "something" a gets turned into an argument of type [a].
  • ReqBody contentTypes a gets turned into an argument of type a.

The FromHttpApiData/ToHttpApiData classes

Wait… How does servant know how to decode the Ints from the URL? Or how to decode a ClientInfo value from the request body? This is what this and the following two sections address.

Captures and QueryParams are represented by some textual value in URLs. Headers are similarly represented by a pair of a header name and a corresponding (textual) value in the request’s “metadata”. How types are decoded from headers, captures, and query params is expressed in a class FromHttpApiData (from the package http-api-data):

class FromHttpApiData a where
  {-# MINIMAL parseUrlPiece | parseQueryParam #-}
  -- | Parse URL path piece.
  parseUrlPiece :: Text -> Either Text a
  parseUrlPiece = parseQueryParam

  -- | Parse HTTP header value.
  parseHeader :: ByteString -> Either Text a
  parseHeader = parseUrlPiece . decodeUtf8

  -- | Parse query param value.
  parseQueryParam :: Text -> Either Text a
  parseQueryParam = parseUrlPiece

As you can see, as long as you provide either parseUrlPiece (for Captures) or parseQueryParam (for QueryParams), the other methods will be defined in terms of this.

http-api-data provides a decent number of instances, helpers for defining new ones, and wonderful documentation.

There’s not much else to say about these classes. You will need instances for them when using Capture, QueryParam, QueryParams, and Header with your types. You will need FromHttpApiData instances for server-side request handlers and ToHttpApiData instances only when using servant-client, as described in the section about deriving haskell functions to query an API.

Using content-types with your data types

The same principle was operating when decoding request bodies from JSON, and responses into JSON. (JSON is just the running example - you can do this with any content-type.)

This section introduces a couple of typeclasses provided by servant that make all of this work.

The truth behind JSON

What exactly is JSON (the type as used in Get '[JSON] User)? Like the 3 other content-types provided out of the box by servant, it’s a really dumb data type.

data JSON
data PlainText
data FormUrlEncoded
data OctetStream

Obviously, this is not all there is to JSON, otherwise it would be quite pointless. Like most of the data types in servant, JSON is mostly there as a special symbol that’s associated with encoding (resp. decoding) to (resp. from) the JSON format. The way this association is performed can be decomposed into two steps.

The first step is to provide a proper MediaType (from http-media) representation for JSON, or for your own content-types. If you look at the haddocks from this link, you can see that we just have to specify application/json using the appropriate functions. In our case, we can just use (//) :: ByteString -> ByteString -> MediaType. The precise way to specify the MediaType is to write an instance for the Accept class:

-- for reference:
class Accept ctype where
    contentType   :: Proxy ctype -> MediaType

instance Accept JSON where
    contentType _ = "application" // "json"

The second step is centered around the MimeRender and MimeUnrender classes. These classes just let you specify a way to encode and decode values into or from your content-type’s representation.

class Accept ctype => MimeRender ctype a where
    mimeRender :: Proxy ctype -> a -> ByteString
    -- alternatively readable as:
    mimeRender :: Proxy ctype -> (a -> ByteString)

Given a content-type and some user type, MimeRender provides a function that encodes values of type a to lazy ByteStrings.

In the case of JSON, this is easily dealt with! For any type a with a ToJSON instance, we can render values of that type to JSON using Data.Aeson.encode.

instance ToJSON a => MimeRender JSON a where
  mimeRender _ = encode

And now the MimeUnrender class, which lets us extract values from lazy ByteStrings, alternatively failing with an error string.

class Accept ctype => MimeUnrender ctype a where
    mimeUnrender :: Proxy ctype -> ByteString -> Either String a

We don’t have much work to do there either, Data.Aeson.eitherDecode is precisely what we need. However, it only allows arrays and objects as toplevel JSON values and this has proven to get in our way more than help us so we wrote our own little function around aeson and attoparsec that allows any type of JSON value at the toplevel of a “JSON document”. Here’s the definition in case you are curious.

eitherDecodeLenient :: FromJSON a => ByteString -> Either String a
eitherDecodeLenient input = do
    v :: Value <- parseOnly (Data.Aeson.Parser.value <* endOfInput) (cs input)
    parseEither parseJSON v

This function is exactly what we need for our MimeUnrender instance.

instance FromJSON a => MimeUnrender JSON a where
    mimeUnrender _ = eitherDecodeLenient

And this is all the code that lets you use JSON with ReqBody, Get, Post and friends. We can check our understanding by implementing support for an HTML content-type, so that users of your webservice can access an HTML representation of the data they want, ready to be included in any HTML document, e.g. using jQuery’s load function, simply by adding Accept: text/html to their request headers.

Case-studies: servant-blaze and servant-lucid

These days, most of the haskellers who write their HTML UIs directly from Haskell use either blaze-html or lucid. The best option for servant is obviously to support both (and hopefully other templating solutions!). We’re first going to look at lucid:

data HTMLLucid

Once again, the data type is just there as a symbol for the encoding/decoding functions, except that this time we will only worry about encoding since lucid doesn’t provide a way to extract data from HTML.

instance Accept HTMLLucid where
    contentType _ = "text" // "html" /: ("charset", "utf-8")

Note that this instance uses the (/:) operator from http-media which lets us specify additional information about a content-type, like the charset here.

The rendering instances call similar functions that take types with an appropriate instance to an “abstract” HTML representation and then write that to a ByteString.

instance ToHtml a => MimeRender HTMLLucid a where
    mimeRender _ = renderBS . toHtml

-- let's also provide an instance for lucid's
-- 'Html' wrapper.
instance MimeRender HTMLLucid (Html a) where
    mimeRender _ = renderBS

For blaze-html everything works very similarly:

-- For this tutorial to compile 'HTMLLucid' and 'HTMLBlaze' have to be
-- distinct. Usually you would stick to one html rendering library and then
-- you can go with one 'HTML' type.
data HTMLBlaze

instance Accept HTMLBlaze where
    contentType _ = "text" // "html" /: ("charset", "utf-8")

instance ToMarkup a => MimeRender HTMLBlaze a where
    mimeRender _ = renderHtml . Text.Blaze.Html.toHtml

-- while we're at it, just like for lucid we can
-- provide an instance for rendering blaze's 'Html' type
instance MimeRender HTMLBlaze Text.Blaze.Html.Html where
    mimeRender _ = renderHtml

Both servant-blaze and servant-lucid let you use HTMLLucid and HTMLBlaze in any content-type list as long as you provide an instance of the appropriate class (ToMarkup for blaze-html, ToHtml for lucid).

We can now write a webservice that uses servant-lucid to show the HTMLLucid content-type in action. We will be serving the following API:

type PersonAPI = "persons" :> Get '[JSON, HTMLLucid] [Person]

where Person is defined as follows:

data Person = Person
  { firstName :: String
  , lastName  :: String
  } deriving Generic -- for the JSON instance

instance ToJSON Person

Now, let’s teach lucid how to render a Person as a row in a table, and then a list of Persons as a table with a row per person.

-- HTML serialization of a single person
instance ToHtml Person where
  toHtml person =
    tr_ $ do
      td_ (toHtml $ firstName person)
      td_ (toHtml $ lastName person)

  -- do not worry too much about this
  toHtmlRaw = toHtml

-- HTML serialization of a list of persons
instance ToHtml [Person] where
  toHtml persons = table_ $ do
    tr_ $ do
      th_ "first name"
      th_ "last name"

    -- this just calls toHtml on each person of the list
    -- and concatenates the resulting pieces of HTML together
    foldMap toHtml persons

  toHtmlRaw = toHtml

We create some Person values and serve them as a list:

people :: [Person]
people =
  [ Person "Isaac"  "Newton"
  , Person "Albert" "Einstein"
  ]

personAPI :: Proxy PersonAPI
personAPI = Proxy

server4 :: Server PersonAPI
server4 = return people

app2 :: Application
app2 = serve personAPI server4

And we’re good to go:

$ curl http://localhost:8081/persons
[{"lastName":"Newton","firstName":"Isaac"},{"lastName":"Einstein","firstName":"Albert"}]
$ curl -H 'Accept: text/html' http://localhost:8081/persons
<table><tr><td>first name</td><td>last name</td></tr><tr><td>Isaac</td><td>Newton</td></tr><tr><td>Albert</td><td>Einstein</td></tr></table>
# or just point your browser to http://localhost:8081/persons

The Handler monad

At the heart of the handlers is the monad they run in, namely a newtype Handler around ExceptT ServantErr IO (haddock documentation for ExceptT). One might wonder: why this monad? The answer is that it is the simplest monad with the following properties:

  • it lets us both return a successful result (using return) or “fail” with a descriptive error (using throwError);
  • it lets us perform IO, which is absolutely vital since most webservices exist as interfaces to databases that we interact with in IO.

Let’s recall some definitions.

-- from the 'mtl' package at
newtype ExceptT e m a = ExceptT (m (Either e a))

In short, this means that a handler of type Handler a is simply equivalent to a computation of type IO (Either ServantErr a), that is, an IO action that either returns an error or a result.

The module Control.Monad.Except from which ExceptT comes is worth looking at. Perhaps most importantly, ExceptT and Handler are an instances of MonadError, so throwError can be used to return an error from your handler (whereas return is enough to return a success).

Most of what you’ll be doing in your handlers is running some IO and, depending on the result, you might sometimes want to throw an error of some kind and abort early. The next two sections cover how to do just that.

Performing IO

Another important instances from the list above are MonadIO m => MonadIO (ExceptT e m), and therefore also MonadIO Handler as there is MonadIO IO instance.. MonadIO is a class from the transformers package defined as:

class Monad m => MonadIO m where
  liftIO :: IO a -> m a

So if you want to run any kind of IO computation in your handlers, just use liftIO:

type IOAPI1 = "myfile.txt" :> Get '[JSON] FileContent

newtype FileContent = FileContent
  { content :: String }
  deriving Generic

instance ToJSON FileContent

server5 :: Server IOAPI1
server5 = do
  filecontent <- liftIO (readFile "myfile.txt")
  return (FileContent filecontent)

Failing, through ServantErr

If you want to explicitly fail at providing the result promised by an endpoint using the appropriate HTTP status code (not found, unauthorized, etc) and some error message, all you have to do is use the throwError function mentioned above and provide it with the appropriate value of type ServantErr, which is defined as:

data ServantErr = ServantErr
    { errHTTPCode     :: Int
    , errReasonPhrase :: String
    , errBody         :: ByteString -- lazy bytestring
    , errHeaders      :: [Header]
    }

Many standard values are provided out of the box by the Servant.Server module. If you want to use these values but add a body or some headers, just use record update syntax:

failingHandler :: Handler ()
failingHandler = throwError myerr

  where myerr :: ServantErr
        myerr = err503 { errBody = "Sorry dear user." }

Here’s an example where we return a customised 404-Not-Found error message in the response body if “myfile.txt” isn’t there:

server6 :: Server IOAPI1
server6 = do
  exists <- liftIO (doesFileExist "myfile.txt")
  if exists
    then liftIO (readFile "myfile.txt") >>= return . FileContent
    else throwError custom404Err

  where custom404Err = err404 { errBody = "myfile.txt just isn't there, please leave this server alone." }

Here’s how that server looks in action:

$ curl --verbose http://localhost:8081/myfile.txt
[snip]
* Connected to localhost (127.0.0.1) port 8081 (#0)
> GET /myfile.txt HTTP/1.1
> User-Agent: curl/7.30.0
> Host: localhost:8081
> Accept: */*
>
< HTTP/1.1 404 Not Found
[snip]
myfile.txt just isnt there, please leave this server alone.

$ echo Hello > myfile.txt

$ curl --verbose http://localhost:8081/myfile.txt
[snip]
* Connected to localhost (127.0.0.1) port 8081 (#0)
> GET /myfile.txt HTTP/1.1
> User-Agent: curl/7.30.0
> Host: localhost:8081
> Accept: */*
>
< HTTP/1.1 200 OK
[snip]
< Content-Type: application/json
[snip]
{"content":"Hello\n"}

Response headers

To add headers to your response, use addHeader. Note that this changes the type of your API, as we can see in the following example:

type MyHandler = Get '[JSON] (Headers '[Header "X-An-Int" Int] User)

myHandler :: Server MyHandler
myHandler = return $ addHeader 1797 albert

Note that the type of addHeader header x is different than the type of x! And if you add more headers, more headers will appear in the header list:

type MyHeadfulHandler = Get '[JSON] (Headers '[Header "X-A-Bool" Bool, Header "X-An-Int" Int] User)

myHeadfulHandler :: Server MyHeadfulHandler
myHeadfulHandler = return $ addHeader True $ addHeader 1797 albert

But what if your handler only sometimes adds a header? If you declare that your handler adds headers, and you don’t add one, the return type of your handler will be different than expected. To solve this, you have to explicitly not add a header by using noHeader:

type MyMaybeHeaderHandler
  = Capture "withHeader" Bool :> Get '[JSON] (Headers '[Header "X-An-Int" Int] User)

myMaybeHeaderHandler :: Server MyMaybeHeaderHandler
myMaybeHeaderHandler x = return $ if x then addHeader 1797 albert
                                       else noHeader albert

Serving static files

servant-server also provides a way to just serve the content of a directory under some path in your web API. As mentioned earlier in this document, the Raw combinator can be used in your APIs to mean “plug here any WAI application”. Well, servant-server provides a function to get a file and directory serving WAI application, namely:

-- exported by Servant and Servant.Server
serveDirectoryWebApp :: FilePath -> Server Raw

serveDirectoryWebApp’s argument must be a path to a valid directory.

Here’s an example API that will serve some static files:

type StaticAPI = "static" :> Raw

And the server:

staticAPI :: Proxy StaticAPI
staticAPI = Proxy
server7 :: Server StaticAPI
server7 = serveDirectoryWebApp "static-files"

app3 :: Application
app3 = serve staticAPI server7

This server will match any request whose path starts with /static and will look for a file at the path described by the rest of the request path, inside the static-files/ directory of the path you run the program from.

In other words: If a client requests /static/foo.txt, the server will look for a file at ./static-files/foo.txt. If that file exists it’ll succeed and serve the file. If it doesn’t exist, the handler will fail with a 404 status code.

serveDirectoryWebApp uses some standard settings that fit the use case of serving static files for most web apps. You can find out about the other options in the documentation of the Servant.Utils.StaticFiles module.

Nested APIs

Let’s see how you can define APIs in a modular way, while avoiding repetition. Consider this simple example:

type UserAPI3 = -- view the user with given userid, in JSON
                Capture "userid" Int :> Get '[JSON] User

           :<|> -- delete the user with given userid. empty response
                Capture "userid" Int :> DeleteNoContent '[JSON] NoContent

We can instead factor out the userid:

type UserAPI4 = Capture "userid" Int :>
  (    Get '[JSON] User
  :<|> DeleteNoContent '[JSON] NoContent
  )

However, you have to be aware that this has an effect on the type of the corresponding Server:

Server UserAPI3 = (Int -> Handler User)
             :<|> (Int -> Handler NoContent)

Server UserAPI4 = Int -> (    Handler User
                         :<|> Handler NoContent
                         )

In the first case, each handler receives the userid argument. In the latter, the whole Server takes the userid and has handlers that are just computations in Handler, with no arguments. In other words:

server8 :: Server UserAPI3
server8 = getUser :<|> deleteUser

  where getUser :: Int -> Handler User
        getUser _userid = error "..."

        deleteUser :: Int -> Handler NoContent
        deleteUser _userid = error "..."

-- notice how getUser and deleteUser
-- have a different type! no argument anymore,
-- the argument directly goes to the whole Server
server9 :: Server UserAPI4
server9 userid = getUser userid :<|> deleteUser userid

  where getUser :: Int -> Handler User
        getUser = error "..."

        deleteUser :: Int -> Handler NoContent
        deleteUser = error "..."

Note that there’s nothing special about Capture that lets you “factor it out”: this can be done with any combinator. Here are a few examples of APIs with a combinator factored out for which we can write a perfectly valid Server.

-- we just factor out the "users" path fragment
type API1 = "users" :>
  (    Get '[JSON] [User] -- user listing
  :<|> Capture "userid" Int :> Get '[JSON] User -- view a particular user
  )

-- we factor out the Request Body
type API2 = ReqBody '[JSON] User :>
  (    Get '[JSON] User -- just display the same user back, don't register it
  :<|> PostNoContent '[JSON] NoContent  -- register the user. empty response
  )

-- we factor out a Header
type API3 = Header "Authorization" Token :>
  (    Get '[JSON] SecretData -- get some secret data, if authorized
  :<|> ReqBody '[JSON] SecretData :> PostNoContent '[JSON] NoContent -- add some secret data, if authorized
  )

newtype Token = Token ByteString
newtype SecretData = SecretData ByteString

This approach lets you define APIs modularly and assemble them all into one big API type only at the end.

type UsersAPI =
       Get '[JSON] [User] -- list users
  :<|> ReqBody '[JSON] User :> PostNoContent '[JSON] NoContent -- add a user
  :<|> Capture "userid" Int :>
         ( Get '[JSON] User -- view a user
      :<|> ReqBody '[JSON] User :> PutNoContent '[JSON] NoContent -- update a user
      :<|> DeleteNoContent '[JSON] NoContent -- delete a user
         )

usersServer :: Server UsersAPI
usersServer = getUsers :<|> newUser :<|> userOperations

  where getUsers :: Handler [User]
        getUsers = error "..."

        newUser :: User -> Handler NoContent
        newUser = error "..."

        userOperations userid =
          viewUser userid :<|> updateUser userid :<|> deleteUser userid

          where
            viewUser :: Int -> Handler User
            viewUser = error "..."

            updateUser :: Int -> User -> Handler NoContent
            updateUser = error "..."

            deleteUser :: Int -> Handler NoContent
            deleteUser = error "..."
type ProductsAPI =
       Get '[JSON] [Product] -- list products
  :<|> ReqBody '[JSON] Product :> PostNoContent '[JSON] NoContent -- add a product
  :<|> Capture "productid" Int :>
         ( Get '[JSON] Product -- view a product
      :<|> ReqBody '[JSON] Product :> PutNoContent '[JSON] NoContent -- update a product
      :<|> DeleteNoContent '[JSON] NoContent -- delete a product
         )

data Product = Product { productId :: Int }

productsServer :: Server ProductsAPI
productsServer = getProducts :<|> newProduct :<|> productOperations

  where getProducts :: Handler [Product]
        getProducts = error "..."

        newProduct :: Product -> Handler NoContent
        newProduct = error "..."

        productOperations productid =
          viewProduct productid :<|> updateProduct productid :<|> deleteProduct productid

          where
            viewProduct :: Int -> Handler Product
            viewProduct = error "..."

            updateProduct :: Int -> Product -> Handler NoContent
            updateProduct = error "..."

            deleteProduct :: Int -> Handler NoContent
            deleteProduct = error "..."
type CombinedAPI = "users" :> UsersAPI
              :<|> "products" :> ProductsAPI

server10 :: Server CombinedAPI
server10 = usersServer :<|> productsServer

Finally, we can realize the user and product APIs are quite similar and abstract that away:

-- API for values of type 'a'
-- indexed by values of type 'i'
type APIFor a i =
       Get '[JSON] [a] -- list 'a's
  :<|> ReqBody '[JSON] a :> PostNoContent '[JSON] NoContent -- add an 'a'
  :<|> Capture "id" i :>
         ( Get '[JSON] a -- view an 'a' given its "identifier" of type 'i'
      :<|> ReqBody '[JSON] a :> PutNoContent '[JSON] NoContent -- update an 'a'
      :<|> DeleteNoContent '[JSON] NoContent -- delete an 'a'
         )

-- Build the appropriate 'Server'
-- given the handlers of the right type.
serverFor :: Handler [a] -- handler for listing of 'a's
          -> (a -> Handler NoContent) -- handler for adding an 'a'
          -> (i -> Handler a) -- handler for viewing an 'a' given its identifier of type 'i'
          -> (i -> a -> Handler NoContent) -- updating an 'a' with given id
          -> (i -> Handler NoContent) -- deleting an 'a' given its id
          -> Server (APIFor a i)
serverFor = error "..."
-- implementation left as an exercise. contact us on IRC
-- or the mailing list if you get stuck!

When your API contains the EmptyAPI combinator, you’ll want to use emptyServer in the corresponding slot for your server, which will simply fail with 404 whenever a request reaches it:

type CombinedAPI2 = API :<|> "empty" :> EmptyAPI

server11 :: Server CombinedAPI2
server11 = server3 :<|> emptyServer

Using another monad for your handlers

Remember how Server turns combinators for HTTP methods into Handler? Well, actually, there’s more to that. Server is actually a simple type synonym.

type Server api = ServerT api Handler

ServerT is the actual type family that computes the required types for the handlers that’s part of the HasServer class. It’s like Server except that it takes another parameter which is the monad you want your handlers to run in, or more generally the return types of your handlers. This third parameter is used for specifying the return type of the handler for an endpoint, e.g when computing ServerT (Get '[JSON] Person) SomeMonad. The result would be SomeMonad Person.

The first and main question one might have then is: how do we write handlers that run in another monad? How can we “bring back” the value from a given monad into something servant can understand?

Natural transformations

If we have a function that gets us from an m a to an n a, for any a, what do we have?

type (~>) m n = forall a. m a -> n a

For example:

listToMaybe' :: [] ~> Maybe
listToMaybe' = listToMaybe -- from Data.Maybe

Note that servant doesn’t declare the ~> type-alias, as the unfolded variant isn’t much longer to write, as we’ll see shortly.

So if you want to write handlers using another monad/type than Handler, say the Reader String monad, the first thing you have to prepare is a function:

readerToHandler :: Reader String a -> Handler a

We obviously have to run the Reader computation by supplying it with a String, like "hi". We get an a out from that and can then just return it into Handler.

readerToHandler :: Reader String a -> Handler a
readerToHandler r = return (runReader r "hi")

We can write some simple webservice with the handlers running in Reader String.

type ReaderAPI = "a" :> Get '[JSON] Int
            :<|> "b" :> ReqBody '[JSON] Double :> Get '[JSON] Bool

readerAPI :: Proxy ReaderAPI
readerAPI = Proxy

readerServerT :: ServerT ReaderAPI (Reader String)
readerServerT = a :<|> b where
    a :: Reader String Int
    a = return 1797

    b :: Double -> Reader String Bool
    b _ = asks (== "hi")

We unfortunately can’t use readerServerT as an argument of serve, because serve wants a Server ReaderAPI, i.e., with handlers running in Handler. But there’s a simple solution to this.

Welcome hoistServer

That’s right. We have just written readerToHandler, which is exactly what we would need to apply to all handlers to make the handlers have the right type for serve. Being cumbersome to do by hand, we provide a function hoistServer which takes a natural transformation between two parameterized types m and n and a ServerT someapi m, and returns a ServerT someapi n.

In our case, we can wrap up our little webservice by using hoistServer readerAPI readerToHandler on our handlers.

readerServer :: Server ReaderAPI
readerServer = hoistServer readerAPI readerToHandler readerServerT

app4 :: Application
app4 = serve readerAPI readerServer

This is the webservice in action:

$ curl http://localhost:8081/a
1797
$ curl http://localhost:8081/b
"hi"

An arrow is a reader too.

In previous versions of servant we had an enter to do what hoistServer does now. enter had a ambitious design goals, but was problematic in practice.

One problematic situation was when the source monad was (->) r, yet it’s handy in practice, because (->) r is isomorphic to Reader r.

We can rewrite the previous example without Reader:

funServerT :: ServerT ReaderAPI ((->) String)
funServerT = a :<|> b where
    a :: String -> Int
    a _ = 1797

    -- unfortunately, we cannot make `String` the first argument.
    b :: Double -> String -> Bool
    b _ s = s == "hi"

funToHandler :: (String -> a) -> Handler a
funToHandler f = return (f "hi")

app5 :: Application
app5 = serve readerAPI (hoistServer readerAPI funToHandler funServerT)

Streaming endpoints

We can create endpoints that don’t just give back a single result, but give back a stream of results, served one at a time. Stream endpoints only provide a single content type, and also specify what framing strategy is used to delineate the results. To serve these results, we need to give back a stream producer. Adapters can be written to Pipes, Conduit and the like, or written directly as StreamGenerators. StreamGenerators are IO-based continuations that are handed two functions – the first to write the first result back, and the second to write all subsequent results back. (This is to allow handling of situations where the entire stream is prefixed by a header, or where a boundary is written between elements, but not prior to the first element). The API of a streaming endpoint needs to explicitly specify which sort of generator it produces. Note that the generator itself is returned by a Handler action, so that additional IO may be done in the creation of one.

type StreamAPI = "userStream" :> StreamGet NewlineFraming JSON (StreamGenerator User)
streamAPI :: Proxy StreamAPI
streamAPI = Proxy

streamUsers :: StreamGenerator User
streamUsers = StreamGenerator $ \sendFirst sendRest -> do
                       sendFirst isaac
                       sendRest  albert
                       sendRest  albert

app6 :: Application
app6 = serve streamAPI (return streamUsers)

This simple application returns a stream of User values encoded in JSON format, with each value separated by a newline. In this case, the stream will consist of the value of isaac, followed by the value of albert, then the value of albert a third time. Importantly, the stream is written back as results are produced, rather than all at once. This means first that results are delivered when they are available, and second, that if an exception interrupts production of the full stream, nonetheless partial results have already been written back.

Conclusion

You’re now equipped to write webservices/web-applications using servant. The rest of this document focuses on servant-client, servant-js and servant-docs.